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Workflows identified from user event logs and click-stream data are useful as knowl-

edge bases for behavioral analysis and recommendation systems. In this study we identify

abstractions or summaries of event logs modeled as user activity flow networks. The ab-

stractions are identified based on structural properties as well as user activity flow dynamics

over the network using community detection methods. We apply a fast modularity opti-

mization and multi-level resolution approach to detect hierarchical community structure in

user activity flow networks. The detected communities are compared to those detected by

the information-theoretic map equation minimization approach to weigh pros and cons of

the fast modularity optimization approach in the workflows context. We further attempt to

identify the most probable sources and sinks of user activity in individual communities and

trim the network accordingly to reduce entropy of the workflow abstractions.



LEARNING HIERARCHICAL WORKFLOWS USING

COMMUNITY DETECTION

by

AKSHAY PESHAVE

Thesis submitted to the Faculty of the Graduate School
of the University of Maryland in partial fulfillment

of the requirements for the degree of
MASTER’S IN COMPUTER SCIENCE

2014



All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted.  Also,  if material had to be removed, 

a note will indicate the deletion.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor,  MI 48106 - 1346

UMI  1558330
Published by ProQuest LLC (2014).  Copyright in the Dissertation held by the Author.

UMI Number:  1558330



© Copyright AKSHAY PESHAVE 2014



Dedicated to my mother...

look mom, I almost made computer scientist!!!

ii



ACKNOWLEDGMENTS

Sincere thanks to Dr. Tim Oates and Dr. Matt Schmill for their guidance and encour-

agement throughout my research. And to all my loved ones for their support.

iii



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Chapter 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 The Activity Flow Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Experiment Data Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Chapter 2 COMMUNITY DETECTION . . . . . . . . . . . . . . . . . . . 7

2.1 Modularity Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Infomap and the Map Equation . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Hierarchical Community Detection . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.1 Hierarchical Modularity Optimization . . . . . . . . . . . . . . . . . 9

2.3.2 Multi-level Community Resolution Using Stability . . . . . . . . . . 11

Chapter 3 METHOD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

iv



3.1 Identifying Workflow Modules . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Inter-module Linkages and Trimming the Flow Network . . . . . . . . . . . 16

3.3 Constructing the Workflow Hierarchy . . . . . . . . . . . . . . . . . . . . . . 22

Chapter 4 AN EXPERIMENT: 2-LEVEL HIERARCHICAL WORKFLOW

WITH PRE-DEFINED SOURCE AND SINK . . . . . . . . . . 24

Chapter 5 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Appendix A COMMUNITY DETECTION QUALITY FUNCTIONS . . . . 32

A.1 Modularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

A.2 Map Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

A.3 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

v



LIST OF FIGURES

1.2 GLOBE Case Creation Workflow . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1 Example of Activity Flow Graph Creation . . . . . . . . . . . . . . . . . . . 6

2.1 Example N/Ws for Community Detection Evaluation . . . . . . . . . . . . . 10

3.1 Level 1 Community Membership . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Level 1 Workflow Abstraction: Trimming Stages . . . . . . . . . . . . . . . 19

3.3 Level 1 Workflow Abstraction (Communities Collapsed) . . . . . . . . . . . 22

4.1 Community 4 : Inter-Community Transitions . . . . . . . . . . . . . . . . . . 25

4.2 1-Level Workflow Abstraction with Source and Sink Defined . . . . . . . . 26

4.3 Level 2 Workflow Abstraction for Community 1 . . . . . . . . . . . . . . . . 28

4.4 2-Level Workflow Abstraction Hierarchy . . . . . . . . . . . . . . . . . . . . 29

vi



LIST OF TABLES

3.1 Level 1 Abstraction: Stage-wise Network Size and Diversity . . . . . . . . 21

vii



Chapter 1

INTRODUCTION

Web application clickstreams and event logs have been historically mined for behav-

ioral patterns which serve as knowledge bases for analytics and personalization systems

(Baglioni et al. 2003; Eirinaki & Vazirgiannis 2003; Lu, Dunham, & Meng 2006). The

e-commerce and online advertising domains have been applying clickstreams and event

logs based personalization and analytics methods for advertisement targeting (De Bock &

Van den Poel 2010) and campaign analytics (Chatterjee, Hoffman, & Novak 2003). Re-

search on applying these methods to learn user activity models has also been maturing

since.

Workflow learning deals with discovering user activity models which may fit the ac-

tivity flow present in event logs while generalizing enough to suggest unseen yet valid

possible activity flows. Several apporaches have been discussed in the past to discover and

learn workflows from logs and traces: machine learning approaches (Herbst 2000), WF-

net induction (Van der Aalst, Weijters, & Maruster 2004) and grammar induction (Yaman,

Oates, & Burstein 2009; Jones & Oates 2010). All approaches discover certain classes

of workflows from their corresponding process event logs and are susceptible to adverse

effects of noisy traces.

Web application clickstreams and event logs are known to be of significantly fine
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granularity to enable production bugs triaging. Such fine granularity implies a sufficiently

large number of events and transitions all of which may not necessarily be relevant to

learning a workflow model. Our interest lies in discovering an abstract workflow at a much

coarser granularity than that of the raw clickstreams and event logs. For example, clicks on

various widgets of a web page may be logged by several web applications. But adapting a

process model to events inside a web page may seldom be a requirement. Such events occur

non-deterministically and are often required to be so. This extent of fineness in granularity

will impose arbitrary noise if raw clickstreams are subjected to the approaches mentioned

above.

The objective of this work is to mine structural patterns which are abstractions of user

activity flow represented by event logs or clickstreams at a relatively coarser granularity.

The abstractions should represent the macro activity flow in the system. As with any sum-

marization process, we expect a potential loss of micro flow information. The abstractions

will be valid if this loss of information is limited enough so that the correct macro flow

is represented by the abstractions. That is, the noise in clikstreams and event logs should

constitute the majority portion of the lost activity flow information. Such abstractions will

be good inputs for the approaches mentioned above in order to discover macro workflows

for software aided processes.

A workflow is a collection of tasks. Each task may be composed of several sub-tasks

which in turn are a collection of activities. Discovering this hierarchy is central to our work.

The raw clickstreams and event logs are formed by individual activities and form the lowest

level of this workflow hierarchy. We pursue the idea of clustering events in event logs based

on a measure of cohesiveness among them. The intuition is that high cohesiveness among

events in a software aided process should imply commonality in context of these events.

The context here is the task (or sub-tasks) to which the activities belong. (Facca & Lanzi

2005) surveys various classes of web-log mining approaches including clustering based on
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similarity metrics. These clustering methods require prior knowledge of the tasks to which

each event belongs. Our method yields clusters without requiring prior knowledge of such

a mapping.

1.1 The Activity Flow Graph

In graphs, cohesiveness and inter-dependency among its nodes are quantified in terms

of edge density and flow density distributions among other measures. Community detection

algorithms exist which partition graphs optimally to resolve inter-dependent sub-graphs

based on measures of cohesiveness. Each resulting community is composed of a cohesive

subset of the graph’s vertex set and and the edges among them. Thus, we represent the

activity flow information in event logs in the form of a graph. We parse event logs and

construct a directed, weighted graph G=(V, E) representing the user activity flow:

V � � v � v > �activities��,

E � � �v1, v2,w� � v1, v2 > V, w > Z�, �v1, v2,w� x �v2, v1,w��,

and

edge e � �v1, v2,w� represents a next � step relationship between v1 and v2

with w � observed frequency of the relationship in the event logs.

Throughout this work, we will refer to G as the activity flow graph because it repre-

sents the flow of user activity based on the event logs for a system. The activity flow graph

will be used to discover a high likelihood hierarchical workflow using a community detec-

tion approach. Figure 1.1 shows a sample user activity log (1.1(a)) and the corresponding

activity flow graph (1.1(c)) constructed using the logs. We can construct a activity work-

flow graph for the activity logs using activity sequences per user shown in Figure 1.1(b).
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We see that activity A1 has a self-loop transition. This transition is observed 4 times in the

user activity log, hence the frequency for the transition is 4.

1.2 Experiment Data Source

GLOBE (Magliocca et al. 2014) or Global Collaboration Engine is an “online collab-

orative environment” for land change researchers. We will use the event logs from GLOBE

for our experiments. Its event logs are comprehensive and well structured. It has 43 distinct

user activities (atomic system events) which are logged per user. Every activity is mapped

to one of 9 logical activity groups defined in GLOBE for the purposes of logging. Every

activity has a unique activity id for event logging purposes and its logical activity group is

indicated by a prefix to its activity id. For example, the login and logout activities belong

to the “user account” activity group and their activity ids bear the prefix “ua”.

FIG. 1.2. GLOBE Case Creation Workflow

Basic users of GLOBE follow a predefined workflow to contribute a case (a basic ar-

tifact in GLOBE) based on a study of their choice to the GLOBE user community. The

workflow is shown in the screenshot in Figure 1.2. Users are allowed to edit source in-
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formation as well as the geometry for the case concurrently or in any sequential order.

The user may edit work on the metadata for the case only after completing the source and

geometry information for the case once. The last step involves confirming all data and

committing the case.

Other implicit workflows include case collection management, case editing and anal-

yses of representativeness and similarity of cases. These workflows along with the activity

to activity groups mapping will serve as a crude measure of accuracy for the activity com-

munities and workflow hierarchy detected by our method.



6

Time
Stamp

User
Activity

ID
tδ U1 A1

tδ+1 U2 A2

tδ+2 U1 A1

tδ+3 U3 A1

tδ+4 U1 A4

tδ+5 U1 A6

tδ+6 U2 A1

tδ+7 U2 A1

tδ+8 U1 A4

tδ+9 U3 A4

tδ+10 U3 A1

tδ+11 U3 A6

tδ+12 U3 A4

tδ+13 U2 A1

tδ+14 U2 A4

tδ+15 U1 A1

tδ+16 U1 A1

(a) User Activity Log

User Activity Sequence
U1 A1, A1, A4, A6, A4, A1, A1

U2 A2, A1, A1, A1, A4

U1 A1, A4, A1, A6, A4

(b) User Activity Sequence

(c) User Activity Flow Graph

FIG. 1.1. Example of Activity Flow Graph Creation



Chapter 2

COMMUNITY DETECTION

In this section we briefly discuss three community detection approaches: (i) Modu-

larity optimization: a relatively fast and popular approach which optimizes an edge den-

sity based objective function called modularity. (ii) Infomap: an information-theoretic

approach which uses containment of flow in modules as a criterion. (iii) Stability aug-

mented modularity optimization: a flexible, multi-level community detection approach

which adopts both quantifications of cohesiveness used in the previous two approaches.

We will weigh merits and demerits of each approach to resolve hierarchical workflows

from event logs. Essential factors to be considered for our problem become clearer here

allowing for an informed choice of community detection method for our needs.

2.1 Modularity Optimization

Modularity (Newman & Girvan 2004) is a measure of the quality of a partition of a

given network which may or may not exhibit community structure. Given a partition, mod-

ularity is quantified as the difference between the fraction of intra-community edges con-

sidering original edges in the network and the fraction when edges are distributed across the

network at random. It measures how different the network exhibiting community structure

is, in terms of localized edge density, from the same network with a random distribution of

7
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edges based on uniform degree.

Although modularity of 1.0 is theoretically indicative of strongest community struc-

ture, Newman et al. (Newman & Girvan 2004) state the typical range of modularity for

networks with strong community structure to be [0.3,0.7], higher modularity being rare.

Their formulation of modularity holds for unweighted and undirected networks. Although

modifying the modularity definition for weighted networks is fairly simple, doing so for di-

rected networks is not. A survey of works addressing modularity optimization for directed

networks, challenges and their respective merits and short-comings is found in (Malliaros

& Vazirgiannis 2013).

Modularity optimization approaches, in addition, are faced with a limit on the mini-

mum size of detectable communities termed the resolution limit (Fortunato & Barthlemy

2007). Modularity, being a measure of pairwise interactions among network nodes, implies

this approach misses out on information flows over longer paths and may detect communi-

ties which do not accurately represent the dynamics of the network (detailed discussion in

(Rosvall & Bergstrom 2008)).

2.2 Infomap and the Map Equation

Infomap is an information-theoretic approach to community detection proposed by

Rosvall & Bergstrom (Rosvall & Bergstrom 2008). It seeks to understand patterns of flow

of information (by way of movement) over a network. In doing so it identifies local interac-

tions which tend to induce flow across the system. These local flow patterns are character-

istic of communities of nodes in the network. This is in contrast to modularity optimization

which relies on pairwise associations among nodes of a network.

Rosvall and Bergstrom reduce the community detection problem to that of efficient

codification of a weighted random surf over the network. Rosvall et al. (Rosvall, Axels-
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son, & Bergstrom 2009) further discuss this ”inference-compression duality” and the map

equation which provides a lower bound on the code length for describing a random surf on

the network for a given partition.

Infomap is based on two fundamental premises: (i) flow persists for longer durations

in modules of the network. (ii) modules induce a pattern of flow over the network. Since

the ”inference-compression duality” is being exploited, two code books are maintained:

1. Module codebook: contains codewords to describe walks within modules

2. Index codebook: contains codewords to describe inter-module walks

The intuition is that the optimal network partition will require minimum code length to

describe flow on the network which is composed of intra-community and inter-community

movements. The map equation is a manifestation of both these movements weighted by

frequency of corresponding codebook usage i.e. frequency of intra-community (module

codebook usage) and inter-community (module codebook usage) movement. In effect, In-

fomap detected communities are representative of network dynamics over longer distances

based on flow (or movement), which is an attribute central to characterization of modular

networks.

2.3 Hierarchical Community Detection

2.3.1 Hierarchical Modularity Optimization

The hierarchical modularity optimization approach described by Blondel et al. in

(Blondel et al. 2008) uses a pair-wise agglomerative strategy for optimizing modularity. It

significantly reduces the effect of resolution limit and is demonstrated to detect communi-

ties accurately and with more efficiency than most other community detection algorithms

on large networks.
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The speed and hierarchical nature of this approach is attributed to its utilization of

the method of Arenas et al. (Arenas et al. 2007). Arenas et al. reduce network size by

grouping nodes and collapsing them into community nodes while preserving modularity of

the network. When done recurrently the approach identifies successively smaller macro-

networks of super-communities having the same modularity as their predecessor macro-

networks. Successive network size reduction allows modularity optimization described in

(Blondel et al. 2008) to iteratively handle smaller macro-networks resulting in a steady

speedup. Iterative reduction and community resolution enables hierarchical modularity

optimization. Arenas et al. (Arenas et al. 2007) formulate the modularity expression

and reduction mechanism for directed graphs too, thus extending applicability to directed,

weighted graphs.

(a) N/W 1 (b) N/W 2 (c) Communities in N/W 1 us-
ing Multi-level Community Res-
olution

FIG. 2.1. Example N/Ws for Community Detection Evaluation (rendition of Fig 2 in
(Rosvall & Bergstrom 2008))

(Rosvall & Bergstrom 2008) shows that modularity optimization may detect commu-

nities, based on edge densities, contrary to the true flow dynamics of networks. This is

demonstrated using two example networks. Refer to Fig. 2.1(a) & 2.1(b) for these two
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networks. It is also noted in (Malliaros & Vazirgiannis 2013) that the method of Arenas et

al. (Arenas et al. 2007) confuses directionality of edges making it susceptible to the issue

demonstrated in (Rosvall & Bergstrom 2008). This suggests that the approach of Blondel

et al.(Blondel et al. 2008) does not satisfy the augmenting requirement of consideration of

localized persistence of flows in cohesive sub-graphs on the network.

2.3.2 Multi-level Community Resolution Using Stability

Lambiotte et al. (Lambiotte, Delvenne, & Barahona 2008) describe a novel approach

for multi-level resolution of the modular structure of networks. This method utilizes the

stability of network partitions as a quality function. The correlation between stability and

modularity is established through symmetric graph counterparts for the directed, weighted

case. This implies modularity optimization on a symmetric graph translates into stability

optimization for the original graph. Stability optimization favors communities which make

it hard for a random walker to exit them implying they contain more than expected infor-

mation flow within them. Time is used as the resolution parameter. Larger values of the

resolution parameter result in larger and few communities. The approach circumvents the

resolution limit issue inspite of using modularity optimization as the base process. Hence,

it has the efficiency of modularity optimization methods and produces results coherent with

information flow dynamics of the network.



Chapter 3

METHOD

As described in the introductory chapter, our objective is to mine the activity flow

graph for a hierarchical workflow. In the survey of three community detection approaches

we saw that discovering quality workflows will require consideration of structural patterns

as well as activity flow patterns in the activity flow graph. An amalgamation of two, not

necessarily mutually exclusive, insights into the activity flow graph are required:

1. Static Structural Patterns: These patterns are the micro-structures and inter-dependencies

which lent themselves to the formation of the network. These are mined based on

localized cohesion.

2. Dynamic Flow Patterns: These patterns help us understand the dynamics of the

graph. The flow in a graph is bounded by the static structural properties of the graph.

These patterns exist for longer distances and are suggestive of coupling of localized

cohesive sub-graphs.

Further discovering hierarchical structure of a workflow requires multi-level resolution of

the above patterns. The method presented by Lambiotte et al. in (Lambiotte, Delvenne,

& Barahona 2008) incorporating community detection using (Blondel et al. 2008) and

(Arenas et al. 2007) is a fitting choice for these requirements and scales well for large

graphs too.

12
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The algorithm has been implemented as a plugin for Gephi(Bastian, Heymann, &

Jacomy 2009), an open source network visualization and exploration tool. The experiments

in this work have been performed using the Gephi implementation. It is observed that

for the example network considered in (Rosvall & Bergstrom 2008) (see Fig. 2.1(a)), the

plugin produces a network partition identical to that produced by Infomap (see Fig. 2.1(c)),

for the resolution parameter value of 0.8. In the example network in (Rosvall & Bergstrom

2008) (see Fig. 2.1(b)) every node is either a global source or sink. This structure is highly

improbable in the context of workflows.

Our method can broadly be laid out into three phases described in the sub-sections

to follow. The three phases are that of community detection, trimming low confidence

structures and knitting the abstraction with higher level abstractions in the hierarchy if any.

3.1 Identifying Workflow Modules

This phase deals with community detection in a sub-graph of the activity flow log.

The output of this phase is an optimal partition of the subgraph into communities. We

begin by applying Lambiotte et al.’s method on the subgraph with resolution parameter

1.0. Resolution parameter of 1.0 yields a partition with optimal modularity. Smaller (or

larger) value of the resolution parameter will yield finer (or coarser) granularity partitions

i.e. more (or less) number of communities. The modularity of the partitions decreases in

either case.

Resolution parameter values greater than 1.0 yield coarser granularity partitions which

are formed by merging communities detected with resolution parameter 1.0. But, the par-

tition obtained using resolution parameter 1.0 has optimal modularity. As a rule, we will

begin with a value of 1.0 and successively decrease the value until a partition with more

than one community is found.
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The GLOBE activity flow graph yields 4 communities in this phase for resolution

parameter value of 1.0. The observed optimal modularity is 0.434 which is indicative

of strong community structure. Figure 3.2(a) shows a bird’s eye view of the partitioned

activity flow graph. Figure 3.1 shows the community membership for all activities after this

phase. We see that members of each community have consistent prefixes. This indicates

that communities represent the logical grouping of activities in GLOBE.

Community 2 contains activities with prefix ”cc”. These activities represent the core

case creation workflow activities involved in the series of steps shown in Figure 1.2. These

include the case geometry, source and other metadata needed to be completed before com-

mitting a case. This community forms the Case Creation Ecosystem in GLOBE.

Community 3 represents the Case Editing Ecosystem. It is formed by activities related

to the editing and deleting of committed cases. Hence, it is justified that these activities

form a separate community even though they have the ”cm” prefix similar to activities in

Community 1.

Community 1 is the largest of all detected communities and contains activities perti-

nent to the following user activity ecosystems :

1. Case Collections Ecosystem (e.g. collection creation, deletion, viewing/listing etc.)

2. User Account Ecosystem (e.g. change password, user profile updates, login/logout

etc.)

3. Representativeness and Similarity Analyses Ecosystem (e.g. analyze, save/resume

analysis etc.).

The activities in Community 1, when subjected to the second iteration of community detec-

tion, form sub-communities consistent with the logical grouping. Figure 4.3(a) in Chapter

4 shows the sub-communities of Community 1. All the analyses activities form a separate

sub-community.
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FIG. 3.1. Level 1 Community Membership

Community 4 represents a new optional feature-set relating to data sheets which was

a recent introduction to the system. This feature is part of one of the three steps in the case

creation workflow but it’s use is optional. Given that this is a new and optional feature the

activity flow into and out of the feature is low relative to older activities in GLOBE. Hence

the community detection method classifies all activities related to this new feature (bearing

prefix ”dt”) into a separate cohesive community since they have less than expected links

with activity nodes in other communities. This follows from the intuition for applying flow-

based community detection to mine abstract units of a workflow. The Infomap approach

produces the same network partition for our network thus validating this partition from a
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flow oriented perspective.

Further drill down, to sub-communities within each community, is possible by isolat-

ing the sub-graphs representing individual communities and subjecting them to community

detection. This is outlined in Blondel et al..(Blondel et al. 2008) for finding out community

structure of communities. The drill down may continue until some exit criteria are satisfied.

In the context of workflow mining, an intuitive exit criteria exercisable in any combination

or singly are:

1. Modularity Threshold: Modularity greater than 0.3, indicative of strong community

structure, may be sufficient in most cases. For finer granularity this threshold may be

relaxed further.

2. Resolution Parameter Threshold: The resolution parameter is indicative of the gran-

ularity of the resultant graph partition in community detection. Based on the appli-

cation domain and the objective a limit on the granularity may be set. This limit

translates into a limit on the resolution parameter in addition to that on the modular-

ity.

3. Limit on Graph Properties: This may include relative proportions of community sizes

and ratio of inter-community and intra-community flow.

A comprehensive discussion on and analysis of exit criteria is beyond the scope of this

work and is left for future work. Nevertheless, this brief discussion does highlight the

extensibility for diverse requirements.

3.2 Inter-module Linkages and Trimming the Flow Network

The goal of this phase is to find and retain high confidence directed edges among nodes

in different communities while trimming low confidence ones. This enables identification
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of high probability pairwise community interactions as well as community entry (source)

and exit (sink) activity nodes for inter-community interactions. Intuitively, nodes with com-

paratively greater activity inflow (outflow) for the aggregation of all pairwise community

interactions in which their communities participate should be the most probable source

(sink) nodes for each community.

We use the modularity preserving graph reduction approach described in (Arenas et

al. 2007) for this phase. Post community detection the partitioned graph may be reduced

to a macro-graph, G’=(V’, E’), using modularity preserving graph reduction, with:

V �
� � C 8A � C b �Communities at current level of hierarchy�,

A � V � �¦c > C,activities which are members of c��,

E�
� � �v�1, v

�

2,w
�� � v�1, c2 > V

�, w > Z�, �v�1, v
�

2,w� x �v�2, v
�

1,w��,

and

edge e � �v�1, v
�

2,w
�� represents a next � step relationship between v�1 and v�2

with w�
�modularity preserving weight for the relationship.

This reduction approach enables us to collapse and expand individual communities

while retaining other communities in their collapsed or expanded form. Thus, weights for

community-community and node-community next-step relationships can be computed.

The process for identifying source and sink nodes in each community is as follows:

1. Compute the sum of inflow (outflow) over all inter-community edges directed into

(out of) the community.

2. Set a flow coverage target: A flow coverage target is the percentage of inter-

community activity flow that the workflow abstraction should capture for it to be

a valid representation of user behavior. This is set for both the inter-community in-
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flow and outflow to enable discovery of source and sink nodes in the community.

Two cases arise when setting a flow coverage target for a node’s inter-community

inflow (outflow):

(a) Non-uniform flow distribution: We apply the Pareto principle (Newman 2005)

and set the flow coverage target at 80% of the total inter-community flow. This

helps discover 20% of the community’s nodes which are vital contributors to

that community’s inter-community activity flow.

(b) Near-uniform flow distribution over edges: In this case applying the Pareto

principle to the activity-wise inter-community flow would result in information

loss in the context of a recommendation knowledge base. Thus, we set the

inter-community flow coverage target at 100%.

Uniformity of flow distribution can be assessed using the chi-square goodness of fit

test (D’Agostino & Stephens 1986).

3. We sort the nodes in decreasing order of their inflow (outflow) and select source

(sink) nodes one by one till the flow coverage target is achieved.

All activity flow graph elements other than those required for achieving the flow cov-

erage target above may be trimmed to get a relatively more deterministic activity flow net-

work. This trimmed network represents the most frequent user activity transitions between

communities.
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(a) Modularized Activity Flow Graph (b) Step 1

(c) Step 2 (d) Step 4

FIG. 3.2. Level 1 Workflow Abstraction: Trimming Stages

The following activity flow network elements, which are not vital to the inter-

community activity flow, are trimmed in a sequence of steps in this stage:

Step 1: Community Internal Activities: Nodes which do not have any incident inter-

community edges.
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Step 2: Low Confidence Edge Activities: Nodes, all of whose incident inter-community

edges do not contribute to the flow coverage target set for the community.

Step 3: Low Confidence Inter-community Transitions: A portion of edges incident on

community edge nodes which do not contribute to the flow coverage target.

Step 4: Community Internal Activities: Upon completion of Step 1 through 3 some edge

nodes may be rendered internal nodes due to their adjacent nodes from other com-

munities being trimmed in earlier trimming steps.

Step 5: Intra-community Transitions: Edges internal to the community should be trimmed

as they are irrelevant to the current level of abstraction hierarchy.

Figure 3.2 shows the level 1 community partition followed by the partition state post

trimming steps 1 through 4. It helps visualize the reduction in complexity of the workflow

abstraction at any level due to trimming. Trimming applied after community detection

at each finer granularity will ensure entropy reduction of the resultant workflow model.

Identifying source and sink nodes in each community brings the community subgraphs

closer to standard workflows in structure. Simplifying the model, the knowledge base for

recommendation systems, implies relatively more determinism and faster recommendation

logic.

Table 3.1 shows decrease in complexity of the workflow abstraction at level 1 as the

trimming phase progresses. The node diversity (Eagle, Macy, & Claxton 2010), (Bonchev

& Buck 2005) is the Shannon entropy of a node normalized by the log of its degree. Edge

directionality is not considered when computing this. Hence, for each node both its inflow

and outflow is considered in the computation. That is,

NodeDiversityi �
�Pj>Neighbors�i��pi,j � lg�pi,j��

lg�indegreei � outdegreei�
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The node diversity compares the entropy of a node with weighted edges to that of the node

if its edges were equally probable. Thus, it is a measure of the reduction in uncertainty

due to the probability distribution over a node’s edges. We compute the average of the

diversity of all nodes in the workflow abstraction after every trimming step (column 4 of

Table 3.1). The complexity (in terms of edges and nodes) and average uncertainty per node

of the workflow abstraction decreases with every trimming step.

Trimming
Step

# Nodes # Edges
Avg. Node
Diversity

1 40 367 0.7277
2 20 148 0.7161
3 20 104 0.7138
4 15 91 0.7034

Table 3.1. Level 1 Abstraction: Stage-wise Network Size and Diversity

Community 4 is seen to have lost most of its activity flow as it manages to retain only

2 of its activities post trimming phase (see Figure 3.2(d)). We have commented on the

detection of community 4 and its membership in Section 3.1. This community is a case

of near-uniform flow distribution and has a 100% flow coverage target. Additionally, the

flow into and out of this community is relatively very low. Hence, inter-community edges

in which activities of community 4 participate do not contribute to the flow coverage target

of other communities and hence are trimmed. To prevent this, inter-community edges in

which members of a community with near-uniform activity flow participate should not be

trimmed at any stage. This ensures that 100% flow coverage holds. We will explore an

alternative to 100% flow coverage for communities with near-uniform flow distribution in

Chapter 4 with an example.

The post-trimming macro-workflow in Figure 3.3 shows we have mined a high con-
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(a) Pre-Trimming (b) Post-Trimming

FIG. 3.3. Level 1 Workflow Abstraction (Communities Collapsed)

fidence approximate workflow model representing user interaction while meeting the flow

coverage target. The nodes are collapsed communities detected in the community detection

phase with their components trimmed in this phase. The edges indicate macro-activity flow

from one community to another.

3.3 Constructing the Workflow Hierarchy

We define an optimal workflow abstraction, at any level in the hierarchical workflow,

as the set of activity nodes and edges in the subgraph under consideration which charac-

terizes the most significant inter-community activity flow. This optimal abstraction is the

output of one community detection and trimming iteration. Successive iterations, applied

to individual communities, will yield abstractions at successive levels of the top-down hi-

erarchy.
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After each iteration, the abstraction should replace the community which it represents

in the preceeding level of the hierarchy. When replacing we may have to eliminate inter-

community edges which involve an activity in the community which was trimmed in its

succeeding abstraction. Although rare, this occurence will only better the quality of the

hierarchical workflow in flow confidence terms.



Chapter 4

AN EXPERIMENT: 2-LEVEL HIERARCHICAL

WORKFLOW WITH PRE-DEFINED SOURCE AND

SINK

We now apply our method to the data set to construct a 2-level hierarchical workflow.

As with any real world case, our interest lies in a specific workflow, that of a GLOBE case

creation. For this we identify two activities from the event logs:

1. Source Activity: This activity, with all certainty, indicates the beginning of the work-

flow at level 1. In GLOBE this is the cc startcase activity. All incoming transitions

for this node are ignored and only outgoing transitions are considered.

2. Sink Activity: This activity, with all certainty, indicates the termination or comple-

tion of the workflow at level 1. In GLOBE this is the cc commitcase activity. All

outgoing transitions for this node are ignored and only incoming transitions are con-

sidered.

Both source and sink activities are considered as single node communities and the rest of

the activities will progress through various phases of our method as described in Chapter 3.

The first iteration of community detection is applied with a resolution parameter value

of 1. We obtain 4 communities with the modularity of the partition as 0.429, indicative

24
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of strongly community structure. In Section 3.1 we briefly discussed the case of activi-

ties relating to the data sheets feature and the relatively low flow through the community

they are members of. Community 4, detected in the current experiment, represents that

feature. As per the trimming process described in Section 3.2, we avoid trimming any

inter-community transitions in which members of community 4 participate. This ensures

100% inter-community flow coverage for community 4 post trimming phase.

We augment the treatment of this case slightly here. Figure 4.1 shows macro-level

inter-community activity flow in which community 4 participates. We see that macro-level

outflow distribution for community 4 is non-uniform. If we impose 80% outflow coverage

target on the macro-outflow of community 4 we can trim inter-community transitions from

activities in C4 to activities in C3, which are low-confidence and possibly noisy transitions.

This additional step follows from the Pareto principle applied to the macro-level activity

flow and can be generalized to all cases of near-uniform node-level flow distribution. After

the trimming phase, including the additional C4 flow trimming step, we obtain the level 1

workflow abstraction shown in Figure 4.2 in micro- and macro-view.

FIG. 4.1. Community 4 : Inter-Community Transitions
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(a) Communities Expanded

(b) Communities Collapsed

FIG. 4.2. 1-Level Workflow Abstraction with Source and Sink Defined
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We choose community 1 for another iteration of our method. Community 1 is the

largest of the four Level-1 communities and we seek to find any finer granularity work-

flow which may be detected. Communities are not detected at resolution parameter=1.0.

This suggests lack of adequately strong community structure based on activity flow. Re-

ducing the value of the resolution parameter till we detect communities with modularity

greater than zero for the sub-network will reveal micro-structures in the flow. These micro-

structures may signify localized clusters of activities on a web-page which may be hard to

detect. These micro-structures may also show association between user triggered activities

and automated back-end activities in the software. These micro-structures may be of help

in productivity analysis and usability profiling.

In the case of community 1, two sub-communities are obtained at resolution parameter

= 0.90 with modularity=0.012. The sub-communities and the optimal level 2 workflow

abstraction for community 1 are shown in Figure 4.3. The sub-community membership

is consistent with the activity groups to which the activities in both sub-communities are

mapped. We replace community 1 in the level 1 workflow abstraction with its level 2

abstraction and obtain the 2-level workflow as shown in Figure 4.4
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(a) Sub Communities Pre-Trimming

(b) Sub Communities Post-Trimming

FIG. 4.3. Level 2 Workflow Abstraction for Community 1
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(a) Level 2 WF Expanded

(b) 2-Level Macro Hierarchy

FIG. 4.4. 2-Level Workflow Abstraction Hierarchy



Chapter 5

CONCLUSION

We have described an intuitive and novel approach to identify abstract hierarchical

workflows from raw, fine grained software event logs and clickstreams. It presents a way

to obtain low complexity, high likelihood workflow abstractions which may form qual-

ity recommendation engine knowledge bases. The method provides significantly accurate

workflow modules without requiring activity context data. Communities of activities pro-

duced are comparable to those produces by information theoretic community detection

methods while performing at par with community optimization approaches. When applied

to GLOBE, the community membership is significantly consistent with the logical group-

ing of activities and the case creation workflow already in place.

We also demonstrated the flexibility provided by the resolution parameter to change

the granularity of community detection which allows construction of hierarchical work-

flows at varying levels. This also facilitates tiered workflow recommendation logic: Inter-

community recommendation logic and intra-community recommendation logic. Intra-

community logic includes any sub-community transition logic that is discovered at lower

levels of granularity. Through all the steps of our method the average node diversity of

the workflow abstractions decreases while preserving the vital graph elements which are

representative of the high likelihood, true workflow abstraction.
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Overlapping communities, i.e. activities common to two or more communities, oc-

cur in the context of workflows. The community detection approach discussed here does

not handle such cases. For example, activities such as login and logout may occur in two

or more communities. These overlap activities add to noise in the workflow mining pro-

cess and their identification and appropriate handling may better the workflow abstractions.

Community detection approaches to handle overlapping nodes are a subject of research.

Incorporation of this capability is one of the next logical steps of study and will ensure

wide-spread applicability of this method in analytics.

Adapting our approach to handle real-time activity flow updates is a practical require-

ment for present day recommendation systems too. To achieve this we require efficiency

and preservation of original flow information. In the trimming process we lose part of the

flow information present in the original network. For large and deep networks, which are

common place today, reconstruction of the activity network and obtaining workflow ab-

stractions repeatedly is not feasible either. Thus, alteration and evaluation of this method

to enable reinforcement of the hierarchical workflow abstractions over time needs to be

explored.



Appendix A

COMMUNITY DETECTION QUALITY FUNCTIONS

We discussed community detection based on structural features and dynamics of a

network in Chapter 2. All three approaches optimize a partition quality function to approx-

imate communities in a graph. Here we briefly discuss each quality function for additional

background for the interested reader.

A.1 Modularity

Modularity (Newman & Girvan 2004) of a graph partition is a function of edge den-

sities in communities. It compares the edge density in each community with the expected

edge density in that community of nodes for the null graph. That is,

Q � �fraction of intra � community edges� � �the expected fraction�

For the directed and weighted graph case, (Rosvall, Axelsson, & Bergstrom 2009) states

modularity as :

Q �

m

Q
i�1

wii
w

�
win
i . wout

i

w2

where,
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m is the number of communities detected

w is the sum of weights of all edges in the graph

wii is the weights of intra-community edges in community i

win
i is the inflow of edges in community i

wout
i is the outflow of edges in community i

The first fraction in the summation represents the observed fraction of flow in the commu-

nity while the second fraction represents the expected fraction of flow given a null graph.

Modularity quantifies the deviation of localized edge density distribution over communities

from the expected distribution. The larger this deviation the stronger is a graph’s commu-

nity structure. An optimal partition would, therefore, imply maximal modularity for the

graph.

A.2 Map Equation

The map equation (Rosvall, Axelsson, & Bergstrom 2009) is used as a quality function

in the context of information theoretic community detection approaches. These approaches

detect communities by utilising implications of a graph’s structure and dynamics on its

codification. The map equation gives the average length of the code that describes a step of

the random walker (or surfer) over the network.

L�M� � q¸ H�Q� �
m

Q
i�1

pi
ý
H�P i�

where,

m is the number of communities detected

H�Q� is the frequency weighted average length of codewords in the index codebook

H�P i� is the frequency weighted average length of codewords in the ith commu-

nity’s module codebook
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q¸ is the probability that the random walker transitions from one community to an-

other i.e. the rate of use of the index codebook

pi
ý

is the time for which the random walker is trapped in community i before exiting

the community i.e. the rate of use of the ith community’s module codebook

The map equation gives the usage frequency weighted sum of the codebook entropies.

Given this definition, an optimal partition would imply minimal average code length given

by the map equation.

A.3 Stability

Stability(Lambiotte, Delvenne, & Barahona 2008) evaluates partitions based on flow

dynamics and is a statistical evaluation of a dynamic continuous-time process applied to

a graph. Unlike the map equation, which uses an information theoretic perspective. The

map equation quantifies the average duration for which a random walker may be trapped in

a community. Stability, on the other hand, quantifies the probability that a random walker

may revisit a community in a given time window. Time is the resolution parameter in this

case and allows control over the granularity of community detection. The stability of a

partition of a graph to which a Markov process is applied is

RM�t� � Q
C>P

P �C, t� � P �C,ª�

where,

M is the Markov process

t is the instance in time (resolution parameter) when a partition is retrieved and it’s

stability computed

P is the set of all communities detected until time t

P �C, t� is the probability that the random walker started in community C and revisits
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it at time t

P �C,ª� is the probability that the process loses memory of the initial conditions,

i.e. of the walker having started in community C

An optimal partition would imply maximal stability. There exists a correlation between

stability and modularity. In the case of directed and weighted graphs, stability optimiza-

tion of a given graph is equivalent to modularity optimisation of another graph which is

“manifestly symmetric” to the given graph. Hence, the problem of stability optimization

may be transformed into one of modularity optimization. This is done in the interest of

computation efficiency without loss of effectiveness of community detection as described

using stability as a quality function.
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