1903.12101v1 [cs.CR] 28 Mar 2019

arxXiv

Extending Signature-based Intrusion Detection Systems With
Bayesian Abductive Reasoning

Ashwinkumar Ganesan
Dept. of Computer Science &
Electrical Engineering,
UMBC,

Maryland, USA
gashwinl@umbc.edu

Zhiyuan Chen
Dept. Of Information Systems,
UMBC,
Maryland, USA
zhchen@umbc.edu

ABSTRACT

Evolving cybersecurity threats are a persistent challenge for system
administrators and security experts as new malwares are continu-
ally released. Attackers may look for vulnerabilities in commercial
products or execute sophisticated reconnaissance campaigns to
understand a target’s network and gather information on security
products like firewalls and intrusion detection / prevention systems
(network or host-based). Many new attacks tend to be modifications
of existing ones. In such a scenario, rule-based systems fail to detect
the attack, even though there are minor differences in conditions /
attributes between rules to identify the new and existing attack. To
detect these differences the IDS must be able to isolate the subset of
conditions that are true and predict the likely conditions (different
from the original) that must be observed. In this paper, we propose
a probabilistic abductive reasoning approach that augments an exist-
ing rule-based IDS (snort [29]) to detect these evolved attacks by (a)
Predicting rule conditions that are likely to occur (based on existing
rules) and (b) able to generate new snort rules when provided with
seed rule (i.e. a starting rule) to reduce the burden on experts to
constantly update them. We demonstrate the effectiveness of the
approach by generating new rules from the snort 2012 rules set and
testing it on the MACCDC 2012 dataset [6].

CCS CONCEPTS

« Probabilistic representations — Bayesian Networks;

KEYWORDS

Abductive Reasoning; Bayesian Networks; Intrusion Detection Sys-
tem; Cybersecurity

1 INTRODUCTION

The estimated loss to companies and organizations affected by
cyber-crimes is increasing [22], with targets being attacked through

DYNAMICS’18, December 2018, San Juan, Porto Rico, USA
This is a pre-print version™
2018.

Pooja Parameshwarappa
Dept. Of Information Systems,
UMBC,

Maryland, USA
poojapl@umbc.edu

Akshay Peshave
Dept. of Computer Science &
Electrical Engineering,
UMBC,

Maryland, USA
peshavel@umbc.edu

Tim Oates
Dept. of Computer Science &
Electrical Engineering,
UMBC,
Maryland, USA
oates@cs.umbc.edu

social media platforms such as Twitter and Facebook. Cybersecu-
rity threats are constantly evolving as adversaries design new ways
to defeat existing systems. These threats are of two main types:
ones that use components of known threats and integrate them
to create a “new” attack and zero-day' attacks where the attacker
discovers a new vulnerability in the product / system that can be
exploited before it can be patched up. Although detecting zero-day
attacks is the ideal expectation, in reality identifying attacks that
are slight modifications of existing attacks can be difficult too. Thus,
Intrusion Detection Systems (IDS) must be regularly updated with
the latest attacks even though attack patterns differ in only small
ways. Consider an example of the Wannacry ransomware attack?.
This malware targeted machines that operated on an older version
of Microsoft Windows using a known exploit called EternalBlue®.
An analysis of Wannacry revealed it to be similar to previous at-
tacks [15]. The same is true with another well-known ransomware
ExPetr* and a modified version Bad Rabbit>.

This phenomenon is clearly visible when we look at snort rules
that contain signature patterns for various cybersecurity threats.
Table 1 shows an example set of snort rules that are similar with
their corresponding CVE IDs. Snort rule MS06-040 [10] tries to alert
administrators to a buffer overflow attack on the Microsoft server
service while MS08-067 [11] checks for an overflow attack triggered
by a specific RPC request. Both rules target the same service but
have minor variations to accommodate the different methods used
to trigger the buffer overflow attack.

Intrusion Detection Systems (IDS) are of three types [3]:

(1) Signature-based systems where the attack patterns [29]
are defined. These systems cannot detect zero-day attacks.
As new malware is detected, a customized signature must be
designed for each attack (or combined with others depending
on the system).

!https://en. wikipedia.org/wiki/Zero- day(computing)
Zhttps://en.wikipedia.org/wiki/WannaCry,ansomware, ttack
Shttps://en.wikipedia.org/wiki/EternalBlue
“https://securelist.com/schroedingers-petya/78870/
Shttps://securelist.com/bad-rabbit-ransomware/82851/

https://en.wikipedia.org/wiki/Zero-day_(computing)
https://en.wikipedia.org/wiki/WannaCry_ransomware_attack
https://en.wikipedia.org/wiki/EternalBlue
https://securelist.com/schroedingers-petya/78870/
https://securelist.com/bad-rabbit-ransomware/82851/

Snort Rule SIG-ID
alert tcp $EXTERNAL_NET any -> $HOME_NET [135,139,445,593,1024:] 7209
(msg: "NETBIOS DCERPC NCACN-IP-TCP srvsvc NetrPathCanonicalize overflow attempt"; flow:established,
to_server;dce_iface:4b324fc8-1670-01d3-1278-5a47bf6ee188;byte_jump: 4, -4 multiplier 2,relative,align,
dce; byte_test:4,>,256,0,relative,dce; metadata: policy balanced-ips drop, policy connectivity-ips
drop, policy security-ips drop, service netbios-ssn; classtype:attempted-admin; sid:7209; rev:13;)
alert tcp $EXTERNAL_NET any -> $HOME_NET [135,139,445,593,1024:] 14782

(msg: "NETBIOS DCERPC NCACN-IP-TCP srvsvc NetrpPathCanonicalize path canonicalization stack overflow
attempt "; flow:established,to_server; dce_iface:4b324fc8-1670-01d3-1278-5a47bf6ee188; dce_opnum:31,
32;dce_stub_data; pcre:"/*(\x00\x00\x00\x00 | .{4}(\x00\x00\x00\x00|.{12}))/sR";byte_jump:4,-4,
multiplier 2,relative,align,dce;pcre:"/\x00\.\x00\.\x00[\x2f\x5c]/R";metadata:policy balanced-ips
drop, policy security-ips drop, service netbios-ssn;classtype:attempted-admin; sid:14782;rev:12;)

Table 1: The table shows two snort rules for a Microsoft remote code execution vulnerability (MS06-040°, MS08-0677) with a critical prior-
ity. Their respective CVE-IDs are 2006-3439 and 2008-4250. The differences between them are in four parameters, namely, dci_iface, pcre,

dce_opum and dce_stub_data. The remaining attributes remain the same.

(2) Machine learning based systems are of two types. They
detect misuse by classifying the traffic as malicious or benign.
Anomaly detection systems try to define “normal” behavior
for each process on a host system or the network. These
systems cannot detect a specific attack (like EternalBlue) but
are able to detect if anomalous (not necessarily malicious)
execution happens. The False Alarm Rate (FAR) can be a
challenge with anomaly detection mechanisms.

(3) Hybrid systems that combine both machine learning mod-
els with signature-based systems.

While signature-based systems require constant rule updates, a
major challenge with data-driven methods is their vulnerability to
traffic that is skewed between benign and malicious components.
The relevant datasets that are openly available (KDD1999 [8], MAC-
CDC 2012 [6]) have a higher degree of malicious traffic as compared
to a live stream where a disproportionately large portion of the
traffic is benign. As described above, rule-based systems are unable
to counter threats that deviate from pre-defined signatures. We
solve this problem by building a model that abduces likely missing
conditions / antecedents from rules.

Abductive Reasoning is a mechanism for generating an infer-
ence that explains given observations with maximum likelihood.
It is widely used in a number of tasks such as diagnosis of med-
ical conditions based on observed symptoms in a patient [27] to
intrusion detection and hypothesizing intrusion objectives [9].

Consider again, the snort rules in table 1. The antecedents of the
rule are the conditions that need to be satisfied so that the alert is
generated. Thus, conditions such as the protocol (tcp / udp), source
/ target ip-address, source / target port number, dce_iface,
byte_test and byte_jump are the antecedents in the rule. Sim-
ilarly, the consequent of a rule can be attributes whose values are
changed (when the conditions are met). With snort, each conse-
quent is an alert message. The difference between the two rules are
the parameters dci_iface, pcre, dce_opum and dce_stub_data.

In this paper, we propose a hybrid system that augments a rule-
based system (snort) with a probabilistic abductive reasoning model
trained from pre-existing snort rules. It performs two tasks, namely,
(a) Predict antecedents / conditions in rules that are likely to occur
(or are occurring but remain unobserved as they are part of different
snort rule whose conditions have not been satisfied), (b) Generate

new rules by predicting a unique combination of antecedents. For
example, given the antecedents of first rule (SIG-ID: 13162) in table 3,
the model generates a new rule (SID: 250001) that has the target port
number changed from [139,445] to [135,139,445,593,1024]
and drops conditions dce_stub_data and byte_test.

The pre-existing snort rules are used to learn the correlation
between antecedents / attributes in a rule. Once, the correlations
are learned, the model abduces antecedents that are likely occur
given a seed (initialization) rule. The antecedents from the seed are
used to generate new rules so as to expand the coverage of attacks
detected by existing rules.

This paper is divided into the following sections. Section 2 pro-
vides an overview of various machine learning, rule based and
hybrid methods for intrusion detection. Also, we discuss abductive
reasoning methods. Section 3 describes the Bayesian model and
pipeline used to generate snort rules. In section 4, we discuss exper-
iments conducted with snort rules dataset and with the MACCDC
2012 dataset. Section 5 describes future directions for our work.

2 BACKGROUND & RELATED WORK
2.1 Machine Learning for Cybersecurity

Over the years, a number of techniques have employed machine
learning for intrusion detection. Amor et al. [1] train a Naive Bayes
network to classify attacks and show that it has competitive perfor-
mance. They compare it against a C4.5 decision tree. Valdes et al.
[33] construct a Bayesian network (eBayes TCP) for the same pur-
pose. The use of artificial neural networks was explored by Cannady
et al. [4] who trained a neural network to perform multi-category
misuse classification. A similar approach was taken by Mukkamala
et al. [23] who compared against a support vector machine. Luo
et al. [19] learned fuzzy association rules to construct generalized
patterns to improve intrusion detection. Genetic algorithms (GA)
have been utilized as well [40]. In inductive learning, rules are in-
duced directly from the training data. One such common inductive
learning process is Repeated Incremental Pruning to Produce Error
Reduction (RIPPER) [5].

Lee et al. [18] construct a two-stage process where different algo-
rithms (like frequent episodes) extract features that RIPPER uses to
generate rules. Among more recent methods, Niyaz et al. [16] use a

A:[1,0,0,1,0...]

/ One Hot Encoding \

B:[10,25,2,6...]

Snort Rule . . New Snort Rules
3 Rule o Build Bayesian N Generate Snort 3
A Preprocessing Model Rules

\ Categorization /

A:[10,25,2,6...]

Predict Missing Antecedents

5
>

Al.n X,

A: alert tcp SEXTERNAL_NET any -> 192.168.3.0/24 80(msg:Sample alert; flow: to_server,established;pcre:/GET.* htm/i;
classtype: web-application-activity;reference:url,http://www.vorant.com/advisories/20060405.html;sid:2000123; rev:1;)

B: alert tcp SEXTERNAL_NET any -> 192.168.3.0/24 80(msg:Sample alert2; flow: to_server,established;pcre:

GET.*.htn/i; classtype: unknown;)

Figure 1: Pipeline to build the Bayesian Abductive Reasoning model. It consists of multiple stages (a) Preprocessing stage where the rule is
encoded by categorizing the attributes and then converting them to a one-hot encoded representation (b) Building the Bayesian model (c)
Rule generation and attribute prediction. A (in red) is a sample snort alert. B (in green) is the generated snort rule. X represents the missing

antecedent in the snort rule A.

self-taught learning algorithm that combines a sparse autoencoder
(unsupervised pre-training) and a multi-layer perceptron (super-
vised fine tuning) to classify normal and malicious traffic in the
KDDY99 dataset. Fiore et al. [13] use a Discriminative Restricted
Boltzmann machine to train a semi-supervised classifier that can
detect anomalies in network traffic. The neural network is trained
on “normal” traffic and learns a criteria for normality. Any devia-
tion from normal behavior is flagged as an anomaly. Wang et al.
[38] similarly try to identify traffic but use a stacked auto-encoder
instead while Erfani et al. [12] implement a deep belief network
(DBN) and fine-tune the model to detect anomalies by using a lin-
ear SVM. Ma et al. [20] combine spectral clustering with a deep
neural network to detect attacks. The network is trained in two
stages. First, the training data is divided into subset using spectral
clustering. The test data is then assigned the pseudo cluster labels
depending on the distance of the test datapoint from each cluster.
Then, the neural network is trained on the combined set of pseudo
labels. Yu et al. [41] improve on the performance of these network
models with a stacked dilated convolutional auto-encoder. Wang
et al. [37] utilize a convolutional neural network to classify mal-
wares. They subsequently use a convolutional LSTM architecture
to learn spatio-temporal features [36]. Buczak et al. [3] and Xin et
al. [39] provide an overview of machine learning and deep learning
methods used in cybersecurity.

But training effective machine learning methods is a challenge.
Data-driven models require the network traffic on which they are
trained to represent the likely distribution of the traffic when they
are employed. This forces security analysts to re-train the model on
a regular (sometimes daily) basis [3]. Also, there is a lack of good
quality labeled data that contains normal and malicious traffic, even
though the volume of data available is high. As new attacks are dis-
covered, annotating the data is a continuous and expensive process.
Vu et al. [35] try to solve this problem by generating synthetic net-
work traffic using an Auxilliary Generative Adversarial Network.

The additional data can be utilized to better train a classifier. In
this paper though, we look at methods to enhance existing rule-
based systems, benefiting from the rules already created by security
analysts.

Although patterns are manually crafted in signature-based IDS,
their performance can be improved by automatically generating
rules. Gomez et al. [14] use a pareto-based multi-objective evolu-
tionary algorithm to evolve snort rules. Vollmer et al. [34] try to
reduce the effort of creating rules when an intrusion is detected by
automating the rule creation process. In our research, a Bayesian
network is trained on snort rules rather than an evolutionary ge-
netic algorithm.

2.2 Abductive Reasoning

As described in the introduction, abductive reasoning is the process
of hypothesizing a cause given observed effects. Broadly, abductive
reasoning methods can be classified into two types: logic-based
[32] and probabilistic [17] methods. Kate et al. [17] build a proba-
bilistic abductive reasoning algorithm with a markov logic network.
Raghavan et al. [28] designed a Bayesian abductive logic program
framework to perform tasks such as plan recognition where the
set of observable facts are inadequate to reason deductively. Logic
Tensor Networks [31] proposed by Serafini et al. create a single
framework to represent first-order predicate logic so as to deduc-
tively reason over a knowledge base.

3 PROBLEM DEFINITION

3.1 Preliminaries

Consider a set of n rules R = {R' ... R*}. Let A = {A; ... A}}
represents the complete set of [antecedents. Each rule R has a set
of m antecedents given by R = {ai ain} wherel <m < [(ai isa
specific value while A’i is the category / feature/ variable). The rules
can have varying numbers of antecedents. In the following sections,

antecedents and attributes are used interchangeably to define the
attribute in a snort rule. Snort rules are defined as follows:

R = {ai, - a£n|ai GA’i ain eA’;n} (1)
is equivalent to:

ai/\.../\afn = R (2)
In snort, each rule is considered to be a conjunction of attributes
(defined in the alert) / antecedents. Also, snort rules do not use
consequent (R’) variables as antecedents (i.e. on L.H.S of the rule).
Each component of the rule is associated with an antecedent that is
assumed to be a categorical variable with a finite set of possible val-
ues. For example, the feature network protocol has a finite set of
values: tcp, udp and other protocols. As the number of antecedents
in a rule may vary, the variable also has an UNK token for rules
where the antecedent is not present. Each rule represents a partic-
ular attack / threat. When R! is provided as a seed (initialization)

rule to the model, it is represented as O'.

Antecedent Type Value

protocol tep

source IP $EXTERNAL_NET

source port any

target IP $HOME_NET

target port [139,445],
[135,139,445,593,1024:]

flow established, to_server

dce_iface 12345678-1234-abcd-ef00
-0123456789ab

metadata policy balanced-ips
drop, policy security-ips
drop,service netbios-ssn

dce_opnum 0,1

byte_test 4,>,256,8,relative,dce,
4,>,512,8,relative,dce

Table 2: A sample set of antecedents that are extracted from
two rules. The rules have all same antecedents except the target
port number where one rule checks more ports, byte_test and
dce_opnum.

To explain the objectives and system architecture, let us consider
an example rules set consisting of two rules. Consider the first rule
R! has a SID: 13162 (from table 3). Table 2 has the complete set of an-
tecedents identified from the two rules. Thus, the two rules differ in
only the target port numbers, byte_test and dce_opnum. Given
all the antecedents and their possible values, the total number of
rules possible are 8 (for each combination target port,byte_test
and dce_opnum). Let R! contain the combination target port =
[139,445],byte_test =4,>,256,8,relative,dce,dce_opnum=
@ while R? has target port = [135,139,445,593,1024:], and
byte_test =4,>,512,8,relative,dce as well as dce_opnum = 1.
Let R! be the seed rule (represented as O!).

3.2 Definition

In this section, we provide the exact definition of abductive rea-
soning. Generating a hypothesis rule can be categorized into the
following tasks:

Abducing Antecedents. In this task, each hypothesis is con-
sidered to be an existing rule with a single antecedent AP being
different. Thus, A? ¢ {Aj. |A§. € O'} for given observation O* (seed
rule).

In case of the example described above, we compute the probabil-
ity of the hypothesis rule having the target port=_[135,139,445
,593,1024:] given R! with byte_test = 4,>,256,8,relative,
dce (the combination does not exist in the rules set).

Once the probabilities of all the antecedent values that are not
part of the seed rule, are computed, the next step is to select an
antecedent as a replacement for its corresponding value in the seed.
There are three strategies that can be applied, i.e., choosing the
antecedent AP that has maximum-likelihood, selecting the top k
most likely antecedents, or defining a threshold likelihood ¢, above
which all antecedents are selected.

Abducing Rules. In this task, each hypothesis is a rule that can
have multiple antecedents from the seed rule replaced or inserted.
Generating hypotheses where likely antecedents are inserted into
the seed rule, has a high computational cost. This is because the
possible combinations are exponential. Hence rule abduction is
constrained to replacing a set of antecedents in the seed rules only.

For the previous example, this will lead to a hypothesis rule hav-
ing target port =[135,139,445,593,1024:] and dce_opnum
=1 if both antecedents are selected.

3.3 System Architecture

In this section, each component of the pipeline is described. Figure
1 shows the overall system architecture and how a snort rule is
processed. We use Scikit-learn [26] for data preprocessing and
constructing the Bayesian network.

Rule Preprocessing. In this step, the snort rules are parsed and
converted to a categorical variable. Snort consists of a fixed set of po-
sition attributes, namely, alert, source IP, source port number,
destination IP and destination port number. The remaining
antecedents / attributes are in the form of key-value pairs. We use
the keys as nodes in a graphical model and the values represent
the set of possible states the variable can take. Thus, a vocabulary
of possible values is built for each attribute including attributes
such as content and pcre. We note that, although, content and
pcre are strings that can potentially have infinite permutations,
in this paper they are considered to have a finite set of possible
values bounded by the rules set R. Thus each attribute is treated as
a categorical variable. Since we construct a multivariate Bayesian
model, the attribute values are then converted to one-hot encoded
/ binary features. In figure 1, A represents the snort rule (from the
rules set R), B is the snort rule that is generated and X represents
the missing / likely antecedents when a seed rule is provided.

Not all attributes in a snort rule are useful though. A list of
excluded attributes is created that contains attributes like sid, rev
and reference. The sid is the signature ID of the rule and rev is
the revision number for the snort rule. Reference contains external
links to information about the attack the snort rule is capturing.
Information contained in the reference attribute can be a URL to
CVE description, microsoft security bulletin or another external
source. The snort rule for alert A in figure 1 shows the sample

Snort Rule SIG-ID
alert tcp $EXTERNAL_NET any -> $HOME_NET [139,445] (msg:"NETBIOS DCERPC NCACN-IP-TCP spoolss 13162
EnumPrinters overflow attempt"; flow:established,to_server;
dce_iface:12345678-1234-abcd-ef00-0123456789ab; dce_opnum:@; dce_stub_data; byte_test:4,>,256,8,dce
relative; metadata:policy balanced-ips drop, policy security-ips drop,service netbios-ssn;
reference:bugtraq,21220; reference:cve,2006-5854; reference:cve,2006-6114; reference:cve,2008-0639;
classtype: attempted-admin; sid:13162; rev:9;)
alert tcp $EXTERNAL_NET any -> $HOME_NET [135,139,445,593,1024:] (msg: "NETBIOS Generated rule alert 250001

from ID-250001"; metadata:policy balanced-ips drop, policy security-ips drop, service

netbios-ssn; dce_opnum:0;flow:established,to_server;

dce_iface:12345678-1234-abcd-ef00-0123456789ab;byte_test:4,>,256,8,relative,dce; sid:250001;rev:1)

Table 3: The table shows a seed rule SID: 13162 and a new generated rule with SID: 250001. The generated rule has all properties of the
seed, with one difference: the destination port attribute has been modified from [139,445] to [135,139,445,593,1024:], thus expanding the rules
application to additional ports where an attacker might target the system in the future.

reference. Additionally, attributes that have a constant value like
snort rule: alert are discarded.

Building a Bayesian Model. Once the snort rules are prepro-
cessed, the one-hot encoded attributes are concatenated to form a
feature vector to train the Bayesian network. To train the model
and infer efficiently, we assume the attributes to be conditionally
independent.

n
P(aj | ai..an) = argmaXnP(aj | ai) 3)
aj€4; =]
where, a; is the specific antecedent value (A; is the categorical
variable) to be predicted given the other observed antecedents.
While inferring, individual antecedents are not observable. The
antecedent is known to be true only when a snort rule generates an
alert. Thus, while inferring the values of antecedents, attributes that
are not a part of the snort rule are assumed to be UNK. To generalize
the model better for UNK (unknown) tokens a Laplace smoothing is
applied,
Fi (a jis a,-) +a
F(a;) + a|T|
where, |T| represents all the samples in the training set.

Generating Snort Rules. After building the Bayesian network,
the model is able to predict the maximum likely antecedent values
or the missing attributes when provided with a seed rule O’. As
discussed before, we can choose the antecedent either using MLE
or the most likely topk values or based on a threshold set manually.
Selections based on the MLE can be highly restrictive. Instead, we
select all antecedent predictions that are above a threshold ¢. They
are combined with the original antecedents of the seed rule in an
unordered list. They then form a graph (represented as adjacency
matrix) where each value for an antecedent is linked to a value of
the next antecedent in the list. We use a depth-first search (DFS)
method to generate each possible combinations from the predicted
values and eliminate the rules that are copies of the seed. The
threshold ¢ has a direct impact on how many rules are generated
as it controls values that are predicted.

In the example, let us assume the target port value [135,139,
445,593,1024:] and dce_opnum value 1 have likelihoods greater
than the threshold t. The additional antecedents are added to the
adjacency matrix formed from the attributes in rule R!. We generate

P(aj | a;) = 4

all combinations of rules from this graph and eliminate copies of R'.
The final rule generated is shown in table 3 (rule SIG-ID: 250001).

3.4 Expanding Features Using Clustering

Although attributes like content and pcre are assumed to be cat-
egorical for the purpose of training the model, they can provide
insight into rules that are similar based how close the content
/ pcre string is to another rule. Thus, clustering can be used to
identify similar rules. One of the ways to cluster snort rules is by
using hierarchical agglomerative clustering [30] with a customized
Levenshtein distance measure [25] computed in the following man-
ner:

D(r,-, rj) = w1 °KD,',j + wyp -

Z leve(ry, r;) (5)

cek; & cek;

As seen in equation 5, the metric is a weighted distance where, r;
and r;j represent the snort rules, KD; ;, the key distance, is the sym-
metric difference between the attributes set in r; and r;, lev, (rl.c, r;)
is the Levenhstein distance between the value of r{ and r]? (cis
a common attribute between r; and rj). Weights w; and w; are
hyperparameters.

4 EXPERIMENTAL RESULTS & ANALYSIS
4.1 Dataset

We use two datasets in our experiments. The first is the commu-
nity edition of snort rules from 2012. The rules are tested on snort
version 2.9.21 that was released in 2012. The dataset contains 43792
rules. A wide variety of rules are available. From these, five cate-
gories are selected, namely, special-attacks, web-misc, web-cgi,
web-php and netbios (selected categories have the large number
of rules). Table 4 shows the different types of rules and the number
of rules available for each type. As the abduced antecedents or
rules generated are specific to each rule set type, the models and
experiments are performed independently. The second dataset is
the MACCDC 2012 dataset [6]. This dataset consists of series of
raw pcap files collected from various attack simulations.

4.2 Abducing Antecedents

As described in task 1 (sub-section 3.2), we test whether the model is
able to abduce a single missing antecedent. The experiment gives us

Rule Type Number of Rules
Special Attacks 902
Web-Misc 643
Web-CGI 379
Web-PHP 201
Netbios 540

Table 4: The number of rules for each rule-type in snort that is used
in the experiments.

an idea about the correlations between different attributes that form
the rules. The test is conducted in the form of a leave one column
out (LOCO) experiment where the column left out is considered
missing. Each rule set in table 4 is randomly split into a training
and test set with 90% of data used for training. We perform 10-
fold cross-validation to test. Also, the rules are clustered with the
customized Levenhstein distance (refer to subsection 3.4). After
agglomerative clustering is executed, a clusterID is assigned to rules
that are similar. The clusterID is used as a feature while training the
network. The Bayesian model (with and without cluster features)
are in green and blue respectively.

The performance of the two networks is compared against a
random baseline (red) and max frequency classifier (purple) (i.e. a
classifier that predicts the same label with the maximum frequency
in the training dataset). Figure 2-6 shows the performance of the
different classifiers.

4.3 Analysis & Discussion

As seen in Figures 2-6, the performance of the Bayesian network
with and without clusterID feature is better than the max frequency
classifier for most attributes. They perform better than the ran-
dom baseline for all attributes. For attributes such as distance and
depth in figure 2, detection_filter and dsize in figure 3, depth
in figure 4, the performance of the max frequency classifier is equal
or better than Bayesian models. This is because the classifier per-
forms well when the attribute has a skewed set of values. Consider
figure 3 that shows the classification performance for Netbios. The
Bayesian classifiers have equal accuracy with the maximum fre-
quency classifier for attributes dsize and detection_filter. The
following table shows the frequency of individual labels for each
of these attributes. As seen in the tables 5 and 6, the majority of

Antecedent Frequency
UNK 538
track by_dst,count 10,seconds 60 2

Table 5: Frequency of unique detection_filter attribute values in
the dataset of size 540.

the values in detection_filter are UNK tokens (as they are rarely
present in snort rules) leading the Bayesian models to perform
poorly with respect to other labels. In comparison, the model has
a better performance for an attribute like flow (table 7) that has a
distribution of unique labels that is less skewed.

Antecedent | Frequency
UNK 538
<56 1
>100 1

Table 6: Frequency of unique dsize attribute values in the dataset
of size 540. The high frequency of UNK labels leads a higher perfor-
mance by the maximum frequency classifier.

Antecedent Frequency
established, to_server 271
UNK 119
to_server, established 80
established,to_client 26
stateless 24
to_client,established 11
established, to_server 4
to_server 4
established, to_server,no_stream 1

Table 7: Frequency of unique flow attribute values. The unique val-
ues have a distribution where the skew is limited. This leads to of a
maximum frequency classifier that performs poorly in comparison.

4.4 Qualitative Analysis of New Rules

To test the quality of the new rules generated (task 2 in sub-section
3.2), we compare the alerts observed using the seed rule and those
generated when the new rules are added to the snort configuration.
When snort configuration is updated with them, the seed rule is
deactivated. This measures their impact independent of the seed.

To generate the rules a single seed rule is provided to the model.
To generate the rules a threshold posterior probability is defined
for each attribute and used to retrieve the top k values for each
antecedent. We perform our tests with a threshold of 0.01.

To compare the alerts generated by both configurations, the pcap
file from the MACCDC 2012 dataset is replayed on snort with each
individual setting. We analyze if any of the alerts generated while
using the new rules are false alarms by associating the timestamps
of these alerts for both configurations. Table 8 shows the timestamps
when alerts for seed and new rules are generated. Then, we calculate
the number of alerts generated.

Since the original rule is a Netbios rule (SID: 13162), we look
at the alerts generated for Netbios only. With the original rules,
330 alerts are generated while with the new rules, 421 alerts are
generated.

4.5 Impact Of Threshold

To test how the threshold affects the rules generated, consider the
same seed rule (SID: 13162) as before. We check the rules gener-
ated from the seed for varying threshold conditions. The threshold
parameter controls the size of the top k predicted values for each
attribute and thus the types of rules that are generated. A low
threshold increases the size of the top k list and generates more
combinations of rules. On the other hand, with a high threshold,
the system may be unable to generate rules at all. To understand
the impact of this parameter, we checked the number of rules that

Predicting Snort Attributes (Antecedents) Of WEB-MISC

@ Random Baseline ™ Max Frequency ™ Without Cluster Features With Cluster Features

0.8
»
g 0.6
3
<
0.4
02
o
sport dip dport metadata fast_pattern isdataat distance flow depth pere classtype content
Snort Rule Attributes
Figure 2: Classification accuracy for each attribute on the Web-Misc ruleset.
Predicting Snort Attributes (Antecedents)
12 m Random Baseline ™ Max Frequency M Without Cluster Features = With Cluster Features
1
g
:
<

2 & A [[;s 4 % [2 4 @ % 4 [4
op, B Poy %y et%%a o i, q"lee Pegg o,,,%7 e;,\p% %y, %d“’%e o %%Ce Qze%:% ype\] i £ o 11:0&61 %‘ia, co%at oy, %oy, qu\ ay
7 &) w
- Snort Rule Attributes

Figure 3: Classification accuracy for each attribute on the Netbios ruleset.

are generated for a range of threshold values (as shown in Figure 5 CONCLUSION & FUTURE WORK

7). In this paper, we show that a Bayesian model trained on snort rules
can be utilized to abduce antecedents and to generate a set of new

Predicting Snort Attributes (Antecedents) Of SPECIAL-ATTACKS

W Random Baseline M Max Frequency M Without Cluster Features ™ With Cluster Features

08
kS
g8 06
:
<
0.4
02
0
sip sport fast_pattern flow flowbits pere depth distance dip dport classtype metadata content
Snort Rule Attributes
Figure 4: Classification accuracy for each attribute on the Special Attacks ruleset.
Predicting Snort Attributes (Antecedents) Of WEB-CGI
08 ™ Random Baseline M Max Frequency & Without Cluster Features ™ With Cluster Features
0.7
0.6
05
g
§ 0.4
<
03
02
0.1
o 1§ I
classtype content
Snort Rule Attributes
Figure 5: Classification accuracy for each attribute on the Web-CGI ruleset.
snort rules that are modifications of an existing rule. By treating the has modified the threat vector. Also, we show that snort rules
missing antecedents either as incomplete or modified conditions, are inherently incomplete and designed for specific attacks whose
the model provides snort the ability to predict missing antecedents pattern is well established. Abducing new snort rules expands the
and generate alerts for rules that are likely to be triggered but rules set, prepare the system better for attacks in the future and
whose conditions have not been met yet because a potential attacker also provides a measure of the incompleteness of the rule set.

Predicting Snort Attributes (Antecedents) Of WEB-PHP

Random Baseline Max Frequency Without Cluster Features With Cluster Features
1
- - -
= = = =
0.8 -
=
> 25 I
§ 0.6 I, T T .x
=
Q
Q
<
0.4
0.2
o0— || || || | | || || . - |
dip dport fast_pattern metadata classtype pere distance flow content
Snort Rule Attributes

Figure 6: Classification accuracy for each attribute on the Web-PHP ruleset.

Time

Snort Alert

3/16-08:48:55.570000

[1:2349:10] NETBIOS DCERPC NCACN-IP-TCP spoolss EnumPrinters attempt [Classification
:Generic Protocol Command Decode] [Priority: 3]
{TCP} 192.168.202.94:52307 -> 192.168.23.100:445

03/16-08:48:55.570000

[*x*] [1:250016:1] NETBIOS Generated rule alert from ID-250016 [*x] [Priority: @]
{TCP} 192.168.202.94:52307 -> 192.168.23.100:445

Table 8: The first alert is generated from an existing snort rule (SID:2349) while the second alert is from a snort rule (SID: 2500016) derived

using the Bayesian model.

Assessing Impact of Threshold Parameter

—e— Wilhout Clusters features With Clusters features.

g T

1004 2 s 0.001 2 s 001 2 s 01

Number of Rules Generate

Threshold Value [0-1]
Figure 7: The number of rules generated for different threshold pa-

rameters.

In the future, we will experiment with different graphical and
neural network models such as Markov Logic Networks (MLN)

[17] and Logic Tensor Networks (LTN) [31] as a substitute for our
Bayesian approach. Today, LTNs are trained for deductive reason-
ing but they can be extended to perform abductive reasoning. We
can expand the current reasoning approach to abduce rules that
have antecedents more than the seed rule and experiment against
multiple missing values in the observation as compared to a single
missing attribute in this paper.

Apart from enhancing the current generation of signature-based
systems with additional reasoning, the bayesian model provides
us with a template for more abstract reasoning. More et. al [21]
demonstrate a system that can detect potential attacks by com-
bining information from various “sensors" on the network i.e. IDS,
network traffic analyzers, system logs and so on taking a more holis-
tic view to detect a potential attack. The system can be extended
when the ontology is grounded with knowledge about prior attacks.
The Unified Cybersecurity Ontology (UCO) does so by combining
cybersecurity concepts from multiple known security ontologies

like CVE [7] and STIX [2]. In our view, the bayesian model can
be extended to reason with a set of rules designed to operate on
such ontologies. Cognitive Cybersecurity System (CCS) [24] is an
example of such a system.

The experiments in this paper make an implicit assumption that
given the increase in the number of alerts and the timestamp of
when the alerts were generated, the rules are detecting potentially
new attacks. Our future experiments will analyze the false alarm
rates (FAR) for abduced rules.

6 ACKNOWLEDGMENTS

This research is being conducted in the UMBC Accelerated Cogni-
tive Computing Lab (ACCL) that is supported in part by a gift from
IBM Research. We thank the other members of the ACCL Lab for
their input, suggestions and guidance in developing this system.

REFERENCES

[1] Nahla Ben Amor, Salem Benferhat, and Zied Elouedi. 2004. Naive bayes vs
decision trees in intrusion detection systems. In Proceedings of the 2004 ACM
symposium on Applied computing. ACM, 420-424.

[2] Sean Barnum. 2012. Standardizing cyber threat intelligence information with the
Structured Threat Information eXpression (STIX). MITRE Corporation 11 (2012),
1-22.

[3] Anna L Buczak and Erhan Guven. 2016. A survey of data mining and machine
learning methods for cyber security intrusion detection. IEEE Communications
Surveys & Tutorials 18, 2 (2016), 1153-1176.

[4] James Cannady. 1998. Artificial neural networks for misuse detection. In National

information systems security conference, Vol. 26. Baltimore.

William W Cohen. 1995. Fast effective rule induction. In Machine Learning

Proceedings 1995. Elsevier, 115-123.

[6] Mid-Atlantic Collegiate Cyber Defense Competition. 2012. NETRESEC. 2012.
U.S. National CyberWatch Mid-Atlantic Collegiate CyberDefense Competition
(MACCDC). https://www.netresec.com/?page=MACCDC. (2012). Accessed:
2018-05-09.

[7] MITRE Corporation. 1999. Common Vulnerabilities and Exposures (CVE). (1999).
http://cve.mitre.org/

[8] KDD Cup. 1999. Dataset. available at the following website http://kdd. ics. uci.
edu/databases/kddcup99/kddcup99. html 72 (1999).

[9] Frédéric Cuppens, Fabien Autrel, Alexandre Miege, and Salem Benferhat. 2002.

Correlation in an intrusion detection process. In Internet Security Communication

Workshop. 153-172.

National Vulnerability Database. 2006. CVE-2006-3439. Available from

MITRE, CVE-ID CVE-2006-3439.. (Aug. 2006). http://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2006-3439

[11] National Vulnerability Database. 2008. ~CVE-2008-4250. Available from
MITRE, CVE-ID CVE-2008-4250.. (Oct. 2008). http://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2008-4250

[12] Sarah M Erfani, Sutharshan Rajasegarar, Shanika Karunasekera, and Christopher

Leckie. 2016. High-dimensional and large-scale anomaly detection using a linear

one-class SVM with deep learning. Pattern Recognition 58 (2016), 121-134.

Ugo Fiore, Francesco Palmieri, Aniello Castiglione, and Alfredo De Santis. 2013.

Network anomaly detection with the restricted Boltzmann machine. Neurocom-

puting 122 (2013), 13-23.

[14] J. Gémez, C. Gil, R. Baiios, A. L. Marquez, F. G. Montoya, and M. G. Montoya.
2011. A Multi-Objective Evolutionary Algorithm for Network Intrusion Detection
Systems. In Advances in Computational Intelligence, Joan Cabestany, Ignacio Rojas,
and Gonzalo Joya (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 73-80.

[15] Andy Greenberg. 2017. Wannacry Ransomware Linked suspected North Ko-
rean hackers. https://www.wired.com/2017/05/wannacry-ransomware-link-
suspected-north-korean-hackers/. (2017). Accessed: 2018-05-09.

[16] Ahmad Javaid, Quamar Niyaz, Weiging Sun, and Mansoor Alam. 2016. A deep

learning approach for network intrusion detection system. In Proceedings of the

9th EAI International Conference on Bio-inspired Information and Communications

Technologies (formerly BIONETICS). ICST (Institute for Computer Sciences, Social-

Informatics and Telecommunications Engineering), 21-26.

Rohit J Kate and Raymond J Mooney. 2009. RJ: Probabilistic abduction using

Markov logic networks. In In: IJCAI-09 Workshop on Plan, Activity, and Intent

Recognition. Citeseer.

[18] Wenke Lee, Salvatore J Stolfo, and Kui W Mok. 1999. A data mining framework
for building intrusion detection models. In Security and Privacy, 1999. Proceedings
of the 1999 IEEE Symposium on. IEEE, 120-132.

(5

=
=2

[13

[17

10

(19]

[20]

[21]

[22

~
=

[24

[25

[26

[27

[28

[29

[30

[31

[32

&
&

(34

(35]

[36

@
=

[38

[39

[40

(41

Jianxiong Luo and Susan M Bridges. 2000. Mining fuzzy association rules and
fuzzy frequency episodes for intrusion detection. International Journal of Intelli-
gent Systems 15, 8 (2000), 687-703.

Tao Ma, Fen Wang, Jianjun Cheng, Yang Yu, and Xiaoyun Chen. 2016. A hybrid
spectral clustering and deep neural network ensemble algorithm for intrusion
detection in sensor networks. Sensors 16, 10 (2016), 1701.

Sumit More, Mary Matthews, Anupam Joshi, and Tim Finin. 2012. A knowledge-
based approach to intrusion detection modeling. In Security and Privacy Work-
shops (SPW), 2012 IEEE Symposium on. IEEE, 75-81.

Steve Morgan. 2018. Cybersecurity facts, figures and statistics.
https://www.csoonline.com/article/3153707/security/top-5-cybersecurity-
facts-figures-and- statistics. html. (2018). Accessed: 2018-05-09.

Srinivas Mukkamala, Guadalupe Janoski, and Andrew Sung. 2002. Intrusion
detection using neural networks and support vector machines. In Neural Networks,
2002. IJCNN’02. Proceedings of the 2002 International Joint Conference on, Vol. 2.
IEEE, 1702-1707.

Sandeep Narayanan, Ashwinkumar Ganesan, Karuna Joshi, Tim Oates, Anu-
pam Joshi, and Tim Finin. 2018. Cognitive Techniques for Early Detection of
Cybersecurity Events. arXiv preprint arXiv:1808.00116 (2018).

Pooja Parameshwarappa, Zhiyuan Chen, and Aryya Gangopadhyay. 2018. Ana-
lyzing attack strategies against rule-based intrusion detection systems. In Proceed-
ings of the Workshop Program of the 19th International Conference on Distributed
Computing and Networking. ACM, 1.

Fabian Pedregosa, Gaél Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,
Vincent Dubourg, et al. 2011. Scikit-learn: Machine learning in Python. Journal
of machine learning research 12, Oct (2011), 2825-2830.

Yun Peng and James A Reggia. 2012. Abductive inference models for diagnostic
problem-solving. Springer Science & Business Media.

Sindhu Raghavan and Raymond] Mooney. 2010. Bayesian Abductive Logic
Programs.. In Statistical Relational Artificial Intelligence. 82-87.

Martin Roesch et al. 1999. Snort: Lightweight intrusion detection for networks..
In Lisa, Vol. 99. 229-238.

Lior Rokach and Oded Maimon. 2005. Clustering methods. In Data mining and
knowledge discovery handbook. Springer, 321-352.

Luciano Serafini and Artur d’Avila Garcez. 2016. Logic tensor networks: Deep
learning and logical reasoning from data and knowledge. arXiv preprint
arXiv:1606.04422 (2016).

Paul Thagard and Cameron Shelley. 1997. Abductive reasoning: Logic, visual
thinking, and coherence. In Logic and scientific methods. Springer, 413-427.
Alfonso Valdes and Keith Skinner. 2000. Adaptive, model-based monitoring for
cyber attack detection. In International Workshop on Recent Advances in Intrusion
Detection. Springer, 80-93.

Todd Vollmer, Jim Alves-Foss, and Milos Manic. 2011. Autonomous rule creation
for intrusion detection. In Computational Intelligence in Cyber Security (CICS),
2011 IEEE Symposium on. IEEE, 1-8.

Ly Vu, Cong Thanh Bui, and Quang Uy Nguyen. 2017. A Deep Learning Based
Method for Handling Imbalanced Problem in Network Traffic Classification. In
Proceedings of the Eighth International Symposium on Information and Communi-
cation Technology. ACM, 333-339.

Wei Wang, Yigiang Sheng, Jinlin Wang, Xuewen Zeng, Xiaozhou Ye, Yongzhong
Huang, and Ming Zhu. 2018. HAST-IDS: learning hierarchical spatial-temporal
features using deep neural networks to improve intrusion detection. IEEE Access
6 (2018), 1792-1806.

Wei Wang, Ming Zhu, Xuewen Zeng, Xiaozhou Ye, and Yiqiang Sheng. 2017. Mal-
ware traffic classification using convolutional neural network for representation
learning. In Information Networking (ICOIN), 2017 International Conference on.
IEEE, 712-717.

Zhanyi Wang. 2015. The applications of deep learning on traffic identification.
BlackHat USA (2015).

Yang Xin, Lingshuang Kong, Zhi Liu, Yuling Chen, Yanmiao Li, Hongliang Zhu,
Mingcheng Gao, Haixia Hou, and Chunhua Wang. 2018. Machine Learning and
Deep Learning Methods for Cybersecurity. IEEE Access (2018).

Yan Yu and Hao Huang. 2007. Ensemble approach to intrusion detection based
on improved multi-objective genetic algorithm. Ruan Jian Xue Bao(Journal of
Software) 18, 6 (2007), 1369-1378.

Yang Yu, Jun Long, and Zhiping Cai. 2017. Network intrusion detection through
stacking dilated convolutional autoencoders. Security and Communication Net-
works 2017 (2017).

https://www.netresec.com/?page=MACCDC
http://cve.mitre.org/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-3439
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-3439
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-4250
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-4250
https://www.wired.com/2017/05/wannacry-ransomware-link-suspected-north-korean-hackers/
https://www.wired.com/2017/05/wannacry-ransomware-link-suspected-north-korean-hackers/
https://www.csoonline.com/article/3153707/security/top-5-cybersecurity-facts-figures-and-statistics.html
https://www.csoonline.com/article/3153707/security/top-5-cybersecurity-facts-figures-and-statistics.html

	Abstract
	1 Introduction
	2 Background & Related Work
	2.1 Machine Learning for Cybersecurity
	2.2 Abductive Reasoning

	3 Problem Definition
	3.1 Preliminaries
	3.2 Definition
	3.3 System Architecture
	3.4 Expanding Features Using Clustering

	4 Experimental Results & Analysis
	4.1 Dataset
	4.2 Abducing Antecedents
	4.3 Analysis & Discussion
	4.4 Qualitative Analysis of New Rules
	4.5 Impact Of Threshold

	5 Conclusion & Future Work
	6 Acknowledgments
	References

